Product/Process Change Notice - PCN 20_0235 Rev. - Analog Devices, Inc. Three Technology Way Norwood, Massachusetts 02062-9106 This notice is to inform you of a change that will be made to certain ADI products (see Appendix A) that you may have purchased in the last 2 years. Any inquiries or requests with this PCN (additional data or samples) must be sent to ADI within 30 days of publication date. ADI contact information is listed below. PCN Title: LTC2666-16 Datasheet Electrical Specification Change Publication Date: 15-Jun-2020 Effectivity Date: 15-Jun-2020 (the earliest date that a customer could expect to receive changed material) **Revision Description:** Initial Release #### **Description Of Change:** Minor changes to the LTC2666-16 Datasheet. Electrical specifications of the datasheet were changed as shown in attached red mark-up datasheet. #### Reason For Change: To facilitate improvement in manufacturing capability. #### Impact of the change (positive or negative) on fit, form, function & reliability: The change described above has no impact on fit, form, function or reliability of the device. **Product Identification** (this section will describe how to identify the changed material) The product shipped after effectivity date will be tested to the new limit. #### **Summary of Supporting Information:** Changes will be reflected on the new product data sheet revision B. See changes on Electrical Characteristics table on page 4. #### **Supporting Documents** Attachment 1: Type: Datasheet Specification Comparison ADI_PCN_20_0235_Rev_-_ADI PCN 20_0235 - LTC2666-16-PG4.pdf | C | | ! 4 4 . | contact your local ADI sales representatives. | |---------------------------------|-----------------------------|----------------------------|--| | FOR ALIBETIONS ON THIS PLIN | nigase send an email to the | regional contacts below or | CONTACT VOLIT IOCAL ALLI SAIGS PANTOSANTATIVAS | | i di duccidi i di ti il i di ti | | | | Americas: Europe: Japan: Rest of Asia: PCN Americas@analog.com PCN_Europe@analog.com PCN_Japan@analog.com PCN_ROA@analog.com | Appendix A - Affected ADI Models | | | | | | | | |--|-----------------------------|-----------------------------|-------------------------------|-----------------------------|--|--|--| | Added Parts On This Revision - Product Family / Model Number (6) | | | | | | | | | LTC2666 / LTC2666CUH-16#PBF | LTC2666/LTC2666CUH-16#TRPBF | LTC2666 / LTC2666HUH-16#PBF | LTC2666 / LTC2666HUH-16#TRPBF | LTC2666 / LTC2666IUH-16#PBF | | | | | LTC2666 / LTC2666IUH-16#TRPBF | | | | | | | | | Appendix B - Revision History | | | | | | |-------------------------------|--------------|------------------|-----------------|--|--| | Rev | Publish Date | Effectivity Date | Rev Description | | | | Rev | 15-Jun-2020 | 15-Jun-2020 | Initial Release | | | | | | | | | | Analog Devices, Inc. Docld:8218 Parent Docld:8181 Layout Rev:7 # **ELECTRICAL CHARACTERISTICS** The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^{\circ}C$. $V_{CC} = 5V$, $IOV_{CC} = 5V$, $V^{+} = 15V$, $V^{-} = -15V$, $V_{REF} = 2.5V$, V_{OUT} unloaded unless otherwise specified. ### LTC2666-16/LTC2666-12 | | | CONDITIONS | | LTC2666-12 | | | LTC2666-16 | | | | |-----------------|---|--|---|------------|--------------|----------|------------|--------------|----------|--------------------| | SYMBOL | PARAMETER | | | MIN | TYP | MAX | MIN | TYP | MAX | UNITS | | DC Performance | | | | | | | | | | | | | Resolution | | • | 12 | | | 16 | | | Bits | | | Monotonicity | All Ranges (Note 3) | • | 12 | | | 16 | | | Bits | | DNL | Differential Nonlinearity | All Ranges (Note 3) | • | | ±0.05 | ±0.5 | | ±0.2 | ±1 | LSB | | INL | Integral Nonlinearity | $V^{+}/V^{-} = \pm 15V$ | • | | ±0.2 | ±1 | | ±2.2 | ±4 | /+5 _{LSB} | | | All Ranges (Note 3) | V ⁻ = GND (Note 3)
C-Grade, I-Grade
H-Grade | • | | ±0.2
±0.2 | ±1
±1 | | ±2.2
±2.2 | ±4
±5 | -/+5LSB
LSB | | V _{OS} | Unipolar Offset Error | 0V to 5V Range
0V to 10V Range | • | | ±1
±2 | ±2
±4 | | ±1
±2 | ±2
±4 | mV
mV | | | V _{OS} Temperature Coefficient | All Unipolar Ranges | | | 1 | | | 1 | | ppm/°C | | ZSE | Single-Supply Zero-Scale Error | All Unipolar Ranges,
V ⁻ = GND | • | | 2 | 5 | | 2 | 5 | mV | | BZE | Bipolar Zero Error | All Bipolar Ranges | • | | ±0.02 | ±0.08 | | ±0.02 | ±0.08 | %FSR | | | BZE Temperature Coefficient | All Bipolar Ranges | | | 1 | | | 1 | | ppm/°C | | GE | Gain Error | All Ranges, External Reference | • | | ±0.02 | ±0.08 | | ±0.02 | ±0.08 | %FSR | | | Gain Temperature Coefficient | | | | 2 | | | 2 | | ppm/°C | | PSR | Power Supply Rejection
All Ranges | V _{CC} = 5V, ±10%
V ⁺ /V ⁻ = ±15V, ±5% | | | 0.1
0.001 | | | 1
0.01 | | LSB/V
LSB/V | | SYMBOL | PARAMETER | CONDITIONS | | MIN | TYP | MAX | UNITS | |------------------|--|---|---|-----------|--|----------------------|-------------------| | V _{OUT} | Output Voltage Swing | To V ⁻ (Unloaded, V ⁻ = GND)
To V ⁺ (Unloaded, V ⁺ = 5V)
To V ⁻ ($-10mA \le I_{OUT} \le 10mA$)
To V ⁺ ($-10mA \le I_{OUT} \le 10mA$) | • | V+-1.4 | V ⁻ + 0.004
V ⁺ - 0.004 | V ⁻ + 1.4 | V
V
V | | | Load Regulation | -10mA ≤ I _{OUT} ≤ 10mA
(Note 4) | • | | 78 | 150 | μV/mA | | R _{OUT} | DC Output Impedance | -10mA ≤ I _{OUT} ≤ 10mA
(Note 4) | • | | 0.078 | 0.15 | Ω | | | DC Crosstalk (Note 5)
0V to 5V Range | Due to Full-Scale Output Change
Due to Load Current Change
Due to Powering Down (per Channel) | | | ±1
±2
±4 | | μV
μV/mA
μV | | I _{SC} | V ⁺ /V ⁻ Short-Circuit Output Current (Note 6) | $V_{CC} = 5.5V$, $V^+/V^- = \pm 15.75V$, $V_{REF} = 2.5V$, $\pm 10V$ Output Range | | | | | | | | | Code: Zero-Scale; Forcing Output to GND
Code: Full-Scale; Forcing Output to GND | • | 16
-40 | | 42
-14.5 | mA
mA | | Reference | e | | · | | | | | | | Reference Output Voltage | | | 2.495 | 2.5 | 2.505 | V | | | Reference Temperature Coefficient | (Note 7) | | | ±2 | ±10 | ppm/°C | | | Reference Line Regulation | V _{CC} ±10% | | | 50 | | μV/V | | | Reference Short-Circuit Current | V _{CC} = 5.5V, Forcing Output to GND | | | 2.5 | | mA | | | REFCOMP Pin Short-Circuit Current | V _{CC} = 5.5V, Forcing Output to GND | | | 65 | | μА | 2666fa